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Abstract
The typical avoided crossings for Hermitian quantum systems depending on
parameters, the diabolic crossing scenario, are generalized to the non-Hermitian
case, e.g. for resonances. Two types of crossings appear: for type I, the real parts
show an avoided and the imaginary parts a true crossing of the eigenenergies,
and for type II the opposite is found. A simple symmetric non-Hermitian two-
state matrix Hamiltonian is analysed in detail. The diabolic point bifurcates
into two exceptional ones on exceptional lines where the matrices are defective.
The adiabatic transport of eigenvectors and eigenstates in parameter space
is discussed in this generalized diabolic crossing scenario, in particular the
geometric Berry phases for a cyclic variation of system parameters, depending
on the topology of the closed curves with respect to the exceptional lines.

PACS numbers: 03.65.Vf, 32.60.+i, 34.50.Gb

1. Introduction

In quantum mechanics, many dynamical processes are described by (avoided) level crossings.
Typically they appear in the form of a (Hermitian) matrix Hamiltonian, where the matrix
elements depend on parameters, c = (c1, c2, . . .), e.g. on the internuclear distance for
electronic transitions in atom–atom interactions, which can be considered as slowly varying in
time. The instantaneous eigenvalues show the familiar avoided level crossings when a single
parameter is varied. True crossings require the variation of more parameters, two in the case
of 2 × 2 matrices, which constitutes the celebrated diabolic crossing scenario of the levels E±
analysed in the following.

Recently, avoided crossing phenomena of quantum eigenvalues and eigenstates well
known from Hermitian Hamiltonians have been extended to the non-Hermitian case. Here,
novel effects have been found, which attracted considerable theoretical [1–5] and (very
recently) also experimental interest [6, 7]. Such non-Hermitian systems appear quite naturally
in different situations, in particular for resonance states in open quantum systems.
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(i) It has been shown—mainly in a semiclassical context—that the transitions induced
between the states can be described by an analytic continuation into the complex
parameter space. For a complex value of a single parameter, the levels can actually
cross, E+(cx) = E−(cx), at critical values cx ∈ C, the so-called Kohn branch points [8].
Such critical crossing points will appear as exceptional points in the following and play an
important role in the dynamics. The semiclassical approach treats the transition in terms
of complex-valued paths encircling the complex crossing points ending up on the excited
level, i.e. the upper Riemann sheet of the complex eigenvalue surface (see, e.g., [9–11]
and references therein) and the transition amplitudes can be described by the integral∮

E(c) dc (1)

for a closed integration path encircling the branch points.
(ii) In the case of an open system, the (coupled) states can be expressed in a basis of resonance

states. In this case the levels are complex from the onset, i.e. Ej = Ej − i�j/2 where the
�j are the decay rates. In most applications, the Hamiltonian matrix can be chosen in a
symmetric representation.

(iii) Non-Hermitian matrices arise also from resonance boundary conditions, e.g. purely
outgoing or incoming asymptotics. The same is true for the case of complex scaling
techniques for resonance calculations [12], where the coordinates or parameters are rotated
into the complex plane. Also in such applications, one chooses a complex symmetric
matrix representation [13]. In this context it has been shown that the Hamiltonian
H = V + ηT , where V and T are non-commuting symmetric matrices, is defective
for a parameter η ∈ C [14] (see also [5]; a recent application to resonances in molecules
can be found in [15]).

Not surprisingly, the crossing scenario for non-Hermitian matrices is richer than diabolic
avoided crossings for the Hermitian case. In particular, a different crossing type, a type II
crossing, arises, which complements the type I crossings already familiar from the Hermitian
case. A discussion of type II crossings of resonance eigenvalues can be found in a theoretical
analysis of Wannier–Stark systems [16, 17] (see also [18] for more recent references) and can
also be detected in the very different studies of resonances, such as for example in biased
multiple quantum wells [19] or predissociation of HNO molecules [20]. It turns out, that the
global crossing scenario is determined by the positions of the exceptional points in parameter
space. In addition to the different behaviour of the energy levels, also the eigenvectors show
novel effects related to the geometry of the paths traced out by the system parameters in
relation to the exceptional points [3–7]. Recently, the phenomena related to the behaviour of
the resonance eigenstates have been observed experimentally for microcavity modes [6, 7].
Because of its generality, it can be expected to appear in many other systems.

The occurrence of crossings in the energy levels is connected to the topic of geometrical
phases. The notion of a geometrical phase was first introduced by Berry [21] in the context of
adiabatic evolution of a system described by a parameter-dependent Hermitian Hamiltonian.
Varying the parameters along a closed curve, the propagated state acquires in addition to the
dynamical phase a geometrical one, which depends only on the topological properties of the
parameter curve, which is nowadays denoted as the Berry phase.

Berry phases have also been considered for non-adiabatic time evolution [22, 23]. The
assumption of a Hermitian system has also been dropped [1, 2]. Geometrical decay rates have
been discussed in [24, 25]. A generalization to non-cyclic evolution of the initial state can be
found in [26]. A first discussion of Berry phases of symmetric matrices is given in [3–5].
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The structure of the paper is as follows. We start with an introduction to cyclic evolution
in non-Hermitian systems (section 2). Afterwards, we discuss the different crossing scenarios
observed in these systems and their influence on the adiabatic evolution of eigenstates
(section 3). Furthermore, the behaviour of the eigenvalues is considered. We conclude
with section 4.

2. Non-Hermitian cyclic evolution

In this paper, we consider a setup described in almost all works on Berry phases, emphasizing
the points essential for the non-Hermitian case. The discussion in this section is based on a
previous work by Mondragón and Hernández [2], where more details can be found.

We consider a quantum system described by the parameter-dependent Hamiltonian
H(c(t)). The parameters c(t) = (c1(t), . . . , cp(t)) are functions of the time t, which leads to
an implicit time dependence of H(c(t)). We consider the behaviour of the solutions of the
Schrödinger equation

ih̄
∂

∂t
|ψ(t)〉 = H(c(t))|ψ(t)〉 (2)

for an adiabatic variation of the parameters. In the present case the Hamiltonian is not
necessarily Hermitian; we assume, however, that the spectrum is discrete and, in order to
avoid complications unnecessary for the present purpose, we will assume that the system
Hamiltonian is already given by a finite matrix representation in a basis which takes care of
the boundary conditions leading to a non-Hermitian matrix. As an example, one may consider
resonance (Siegert) boundary conditions.

It is convenient to base the analysis on the instantaneous eigenstates |ϕn(c)〉 of the
Hamiltonian,

H(c)|ϕn(c)〉 = En(c)|ϕn(c)〉 (3)

together with the eigenstates |χn(c)〉 of the adjoint operatorH †(c),

H †(c)|χn(c)〉 = E∗
n(c)|χn(c)〉. (4)

Because of

〈χn(c)|H(c) = 〈χn(c)|En(c) (5)

the two sets of states are often denoted as right and left eigenstates of H. Note that, in general,
both types of states define a non-orthogonal basis. However, the two sets are orthogonal to
each other,

〈χn(c)|ϕm(c)〉 = 0 for En �= Em (6)

i.e. they form a bi-orthogonal basis [27]. The convenient normalization

〈χm(c)|ϕn(c)〉 = δmn (7)

used in the following requires 〈χn(c)|ϕn(c)〉 �= 0, which can actually be violated with serious
consequences for the global behaviour of the states on parameter space. We will return to this
later in this paper.

Two special cases are often encountered in applications:

(a) For a Hermitian Hamiltonian,H = H †, the eigenvalues En are real, the eigenstates |χn〉
and |ϕn〉 coincide and (7) agrees with the well-known orthonormality relation.
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(b) For a symmetric Hamiltonian,H = H t, we haveH † = H ∗ with the consequence that the
complex conjugate of an eigenstate |ϕn〉 of H is an eigenstate ofH †, i.e. the left eigenstates
can be chosen as

|χn(c)〉 = |ϕ∗
n(c)〉 (8)

which reduces to the common choice of real eigenstates if the Hamiltonian is also
Hermitian (i.e. real).

If the bi-orthogonal states are chosen as (8) and normalized as (7), then each pair of the basis
states is fixed by these conditions up to a common sign and not a phase factor as usual. In
addition, it should be pointed out that in the symmetric case with the choice (8) of the left
eigenstates the normalization (7) appears as

〈ϕ∗
m(c)|ϕn(c)〉 = δmn. (9)

This should not, however, be misinterpreted as a special scalar product as, e.g., the c-product
[12, 28, 29], and we stress that here we use the familiar scalar product of quantum mechanics
throughout.

In the next section, we will confine ourselves to a detailed discussion of the symmetric
case. Here, however, the Hamiltonian can still be general. Expanding the state into the
instantaneous (right) eigenstates

|ψ(t)〉 =
∑
n

an(t)|ϕn(c(t))〉 (10)

and projecting onto the left eigenstate |χm〉 yields

d

dt
am(t) +

∑
n

〈χm|∇cϕn〉 · dc(t)
dt

an(t) = − i

h̄
Em(t)am(t) (11)

where the normalization (7) has been used and the instantaneous eigenstates are assumed to
be differentiable with respect to the parameters c.

Following the adiabatic approximation scheme (for a recent discussion of the non-
Hermitian case see [30]), the non-diagonal terms are neglected and the decoupled differential
equations have the solution

an(t) = exp

{
− i

h̄

∫ t

0
En(t

′)dt ′ + iγn(t)

}
an(0) (12)

where the exponential contains a dynamical part
∫ t

0 En(t
′) dt ′, and

γn(t) = i
∫

〈χn|∇cϕn〉 · dc(t)
dt

dt = i
∫

c
〈χn|∇cϕn〉 · dc (13)

is a geometric phase. If the system is initially in an eigenstate

|ψ(0)〉 = |ϕn(c(0))〉 (14)

the adiabatic time evolution is then given by

|ψ(t)〉 = e− i
h̄

∫ t
0 En(t

′)dt ′ eiγn(t)|ϕn(c(t))〉. (15)

Let us consider a cyclic state evolution, i.e. an adiabatic transport of an eigenstate
|ψ(0)〉 = |ϕn(c(0))〉 along a closed curve. Assuming that the state returns to its initial
state after a time T up to a prefactor, it can be written as [21]

|ψ(T )〉 = e− i
h̄

∫ T
0 En(t

′)dt ′eiγ Bn |ϕn(c(0))〉. (16)
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Here, γ Bn is the geometric Berry phase, which is, however, complex valued in the non-
Hermitian case considered here. Comparing with (15) we have

γ Bn = γn(T ) + λn(T ) (17)

with

eiλn(T ) = 〈χn(c(0))|ϕn(c(T ))〉. (18)

Note that after the time T, the transported basis need not necessarily reproduce itself (compare
for example equation (19)) which leads to a non-vanishing λn(T ).

It is instructive to check explicitly that the phase term γ Bn is well defined, i.e. independent
of the scale factor of the chosen basis states. In a scaled basis

|ϕ̃n(t)〉 = θn(c(t))|ϕn(t)〉 〈χ̃n(t)| = 1

θn(c(t))
〈χn(t)| (19)

which conserves the normalization (7), the time-evolved state reads

|ψ(T )〉 = e− i
h̄

∫ T
0 En(t

′)dt ′eiγ̃n(T )|ϕ̃n(c(T ))〉 (20)

with

γ̃n(T ) = i
∫ T

0
〈χ̃ (c(t))|∇cϕ̃n(c(t))〉 · dc(t)

dt
dt . (21)

Consequently, we have

eiλn(T ) = 〈χn(c(0))|ϕn(c(T ))〉
= θn(c(0))
θn(c(T ))

〈χ̃n(c(0))|ϕ̃n(c(T ))〉 = θn(c(0))
θn(c(T ))

eiλ̃n(T ) (22)

and the Berry phase is

γ Bn = γ̃n(T ) + λ̃n(T )

= i
∫ T

0
〈χ̃n(c(t))|∇cϕ̃n(c(t))〉 · dc(t)

dt
dt + λ̃n(T )

= i
∫ T

0

1

θn(c(t))
〈χn(c(t))|∇c [θn(c(t))ϕn(c(t))]〉 · dc(t)

dt
dt + λ̃n(T )

= i
∫ T

0
〈χn(c(t))|∇cϕn(c(t))〉 · dc(t)

dt
dt + i

∫ T

0

∇cθn(c(t))
θn(c(t))

· dc(t)
dt

dt

+ λn(T )− i ln

(
θn(c(T ))

θn(c(0))

)
= γn(T ) + λn(T ) (23)

which shows that γ Bn is indeed independent of the scaling.
Choosing an appropriate scaling of the instantaneous basis, it is now possible to express

the Berry phase by the geometrical phase
(
γ Bn = γn(T )

)
or by the phase change

(
γ Bn = λn(T )

)
of the instantaneous basis state alone. In both cases, the states are required to be differentiable
along the circuit in parameter space up to a set of measure zero. If we additionally have
|ϕn(c(T ))〉 = |ϕn(c(0))〉, i.e. if the phase term λn(T ) vanishes, then the Berry phase is given
by the term γn(T ) alone. In most applications, however, this is not at all easily realized. Such
an explicit assignment of the phase can be circumvented if the integral (13) can be rewritten
as a surface integral by means of Stokes theorem [21]. As we will see more clearly in the
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following section, this can be difficult or even impossible for non-Hermitian Hamiltonians
when certain critical lines are encircled by the integration path [2]. In the case of a symmetric
non-Hermitian Hamiltonian, however, the bi-orthogonal instantaneous eigenstates provide a
simple requisite for a different phase assignment, using (8) and (9). Differentiation of the
orthogonalization relation (9) yields

0 = 〈∇cϕ
∗
n(c)|ϕn(c(t))〉 + 〈ϕ∗

n(c)|∇cϕn(c)〉 = 2〈∇cϕ
∗
n(c)|ϕn(c)〉 (24)

i.e. γn(T ) = 0, and the Berry phase is solely determined by the phase change of the
instantaneous basis state:

γ Bn = λn(T ). (25)

3. Curve crossings in a two-state system

In many cases of interest, the dynamics is predominantly determined by two states, and the
dynamics can be well described by a two-state system. We will therefore study a simple
however quite typical two-state model in detail. The matrix representation of the Hamiltonian
is given by

H =
(
ε V

V −ε
)

(26)

where V denotes the coupling. The zero point of the energy scale has been chosen in the
middle of the uncoupled states. For ε, V ∈ R the eigenvalues

E±(ε, γ, V ) = ±
√
ε2 + V 2 (27)

of the Hamiltonian are real valued and show a double cone in the space (ε, V , E±) with a
degeneracy at the diabolic point ε = V = 0. Varying the parameter ε for V �= 0, the
eigenvalues show the well-known avoided crossing behaviour with a minimum distance 2|V |
at ε = 0. The corresponding eigenstates u± are orthogonal, because H is Hermitian. Berry
[31] analysed a Hermitian extension of this Hamiltonian in detail, i.e. the three-parameter
Hamiltonian for the case of a complex-valued coupling V = x + iy,

H =
(

ε x + iy
x − iy −ε

)
(28)

where the diabolic crossing scenario survives. Here we will consider a non-Hermitian,
symmetric extension of the Hamiltonian (26) modelling a decaying system by allowing the
energies on the diagonal to be complex valued. (Note that any matrix can be transformed to
the complex symmetric form by a similarity transformation [32].) In most applications the
lower state is much more stable than the upper one. Here we assume for simplicity that only
the upper state possesses a decay width,

H =
(
ε − 2iγ V

V −ε
)

(29)

with ε, V, γ ∈ R and γ � 0. One can easily show that this models also the general case in
which both states can decay.

3.1. Resonance eigenvalues

The eigenvalues

E±(ε, γ, V ) = −iγ ±
√
(ε − iγ )2 + V 2 = E± − i�±/2. (30)
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Figure 1. The exceptional lines V = ±γ separate the critical plane ε = 0 into regions of type I
(�+ = �−) and type II (E+ = E−) crossings.

of the Hamiltonian (29) are degenerate for real values of the parameters if the conditions

ε = 0 and V = ±γ (31)

are satisfied. Figure 1 shows the critical plane ε = 0 in the three-dimensional parameter space
ε, V, γ . The critical or exceptional lines [3] V = ±γ separate the critical plane into different
regions:

(a) For |V | > γ the imaginary parts of the eigenvalues coincide, �+ = �− = 2γ . The real
parts differ by E+ − E− = 2

√
V 2 − γ 2. We will denote this case as a type I crossing.

(b) For |V | < γ the real parts of the eigenvalues coincide, E+ = E− = 0, and the imaginary
parts differ, �+ − �− = 4

√
γ 2 − V 2. This case will be denoted as a type II crossing.

(c) Along the critical lines V = ±γ we have a full degeneracy, E+ = E−.

In the following, we consider the behaviour of the eigenvalues for a continuous change of
the parameters. Varying the system parameters along a curve c : t → c(t) = (ε(t), γ (t), V (t))

extending from negative values of ε to positive ones, this curve will intersect the critical plane
ε = 0, and we will observe a crossing of type I or II depending on the point of intersection.
As an example, figure 2 shows the eigenvalues for −2 � ε � 2, γ = 1 and two values of
the coupling, V = 1.01 and V = 0.99. Note that for γ �= 0 we can measure the parameters
in units of γ , i.e. we can restrict ourselves to γ = 1. In the first case, we have the familiar
type I crossing, in the second, less familiar case, a type II crossing. Both types of crossings
have been observed for realistic Hamiltonians. The first case is found for most curve crossing
processes, e.g. in atomic collisions, and reduces to the diabolic crossing scenario in the limit
γ → 0. The second was discussed in a paper by Avron on Wannier–Stark resonance states
[16] and more recently by Grecchi and Sacchetti [17] (see also [18] and references therein).

It may also be of interest to look at the complex crossing points of the eigenvalues (30)
in the complex ε-plane, i.e. the Kohn branch points mentioned in the introduction. They are
found at

ε± = i(γ ± V ) (32)

on the imaginary axis. If the parameter V is changed from γ < |V | to γ > |V | one of these
branch points crosses the real axis for γ = V and the crossing type changes from type I to
type II (see also [17]). Here, however, we will restrict ourselves to real ε values.
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Figure 2. Real part (left) and imaginary part (right) of the eigenvalues (30) as a function of ε for
γ = 1. In the upper figures we have a type I crossing (V = 1.01), in the lower figures a type II
crossing (V = 0.99).

Let us now take a closer look at the transport of eigenvalues and eigenvectors for a cyclic
variation of the parameters, i.e. along a closed curve in parameter space for γ = 1 and changing
the other two parameters ε and V . The exceptional lines intersect the (ε, V )-plane at two
points, P± = (0, 1,±1), the exceptional points [3]. Figure 3 shows the Riemann surfaces of
the energies E±(ε, γ = 1, V ) over the (ε, V )-plane. On the line ε = 0 the real parts intersect
for |V | < 1, and for |V | > 1 the imaginary parts. The exceptional points P± are located at
the boundary, i.e. at V = ±1. Note that for γ → 0 the exceptional points move towards each
other and join into a single diabolic point at ε = V = 0. The ‘double coffee filter’ shaped
surfaces for the real parts change into the celebrated diabolic double cone. A typical closed
curve in the (ε, V ) parameter plane does not pass through an exceptional point. In principle,
we can distinguish three qualitatively different cases according to the number of exceptional
points enclosed by the curve:

(a) When no exceptional point is enclosed, the resonance energies simply return to their
initial values for a cyclic parameter variation.

(b) When a single exceptional point is encircled, the curve in parameter space crosses the
ε = 0 plane twice. The crossing types, however, are different. At the type I crossing,
the imaginary parts move to the other sheet and interchange their character while the
real parts remain on their sheets. At the type II crossing we get the opposite behaviour.
After a complete cycle, both the real and the imaginary parts cross to the other sheet
with the result that the eigenvalues interchange. After a second cycle they return to
their original values. This characteristic behaviour of the eigenvalues can be used in
applications as an indicator of the existence of an exceptional point in a region in parameter
space [33].

(c) When both exceptional points are encircled, the real parts stay on their surfaces and the
imaginary parts cross twice, i.e. the resonance energies return to their initial values.
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Figure 3. Real (left) and imaginary (right) parts of the eigenvalues (30) for γ = 1 as a function
of ε and V . For ε = 0 and |V | > 1 the imaginary parts cross (type I crossings), for |V | < 1 the
imaginary parts cross (type II crossings).

3.2. Resonance eigenstates

The (right) eigenstates of the Hamiltonian (29) for the complex resonance eigenvalues E± in
equation (30) are

u± = 1

w±

(E± + ε
V

)
. (33)

Choosing the left eigenstates as v± = u∗
± and using the normalization (7) we get

〈v±|u±〉 = 〈u∗
±|u±〉 = w−2

± ((E± + ε)2 + V 2)=! 1. (34)

This determines the normalization constants up to a sign:

w± =
√
(E± + ε)2 + V 2. (35)

During a parameter variation, the sign of the square root is chosen continuously along the path
in parameter space.

This normalization fails whenever the square root is zero, i.e. on the exceptional lines (31)
which must be treated separately. Here the eigenvalues are degenerate, E± = E = −iγ , with
an algebraic multiplicity of two, and we have two possibilities according to the dimension of
the corresponding eigenspaces: only a single eigenvector exists and the Hamiltonian (29) is
unitarily equivalent to a Jordan block,

H ∼

 E 1

0 E


 (36)

or we have two linear independent eigenvectors and

H ∼
( E 0

0 E
)
. (37)

The first case is met on the exceptional lines ε = 0, V = ±γ �= 0, and the second case at
the diabolic point ε = V = γ = 0. It is instructive to discuss this in more detail. On the
upper (V = +γ ) and lower (V = −γ ) exceptional lines the (single) eigenstates u↑ and u↓,
respectively, are

u↑ = 1√
2

(
i
1

)
u↓ = 1√

2

(
i

−1

)
. (38)
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Both states, which are eigenstates of different Hamiltonians, are normalized as 〈u↑↓|u↑↓〉 = 1,
orthogonal to each other,and do not depend on the value of γ = ±V . In the limit γ = ±V →0,
these two states form the two independent eigenstates at the diabolic point.

Let us now analyse the behaviour of the eigenstates in detail when the parameters V and
ε are varied along a closed curve keeping γ constant. We recall that the eigenvectors are
uniquely determined up to the choice of their signs which can be easily assigned by studying
the behaviour for a simple path, a small circle of radius r around the exceptional point, chosen
here as V = +γ :

ε = −r sin φ V = γ + r cosφ (39)

with r  γ . Representing the two eigenstates u± in the form

u+ =
(

cos θ
sin θ

)
u− =

(− sin θ
cos θ

)
(40)

with

θ = arctan

(
V

E+ + ε

)
= arctan

(
γ + r cosφ

−iγ − r sin φ +
√
r2 + 2rγ eiφ

)
(41)

one immediately arrives at

tan θ = V

E+ + ε
= i −

√
2r

γ
ei φ2 +O(r) (42)

and

Re(θ) ≈ 1

4i
ln eiφ = φ

4
(43)

for small r. Furthermore, we get

E±(φ) ≈ −iγ ±
√

2rγ eiφ/2 (44)

which implies E±(φ = 2π) = E∓(φ = 0), or in an abbreviated notation

E±
2π−−→E∓ (45)

in agreement with the discussion in the preceding section. In combination with (43) this yields
the desired equations for the behaviour of the eigenstates:

u+
2π−−→ +u−

2π−−→ −u+ u−
2π−−→ −u+

2π−−→ −u− (46)

i.e. the states are interchanged in a single cycle and one of them changes its sign. After a
second cycle both states are reconstructed with a phase factor eiπ = −1. After four cycles the
initial eigenstates are exactly recovered again. A few remarks seem to be necessary here:

(i) The approximation r  γ made in the above considerations was only used in order to
extract the sign in a simple way. Because of continuity, the resulting relations are exact.

(ii) There is an apparent asymmetry in the sign changes in equation (46) which is simply due
to the (arbitrary) choice of the relative phases of u+ and u− for φ = 0: For u′

+ = u+ and
u′

− = −u−, the sequence (46) reads

u′
+

2π−−→ −u′
−

2π−−→ −u′
+ u′

−
2π−−→ +u′

+
2π−−→ −u′

−. (47)
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(iii) The states u+ and u− form a (non-orthogonal) basis. Therefore, we have

x
4π−−→ −x (48)

for an arbitrary linear combination. For a single cycle of 2π , however, a state generally
changes. Only the special linear combinations

y± = α(u+ ±iu−) (49)

are reproduced up to a phase factor:

y±
2π−→ ±iy±. (50)

(iv) The behaviour of the eigenstates is the same for the other exceptional point at V = −γ .
(v) It is straightforward to show that for a closed curve encircling both exceptional points,

both the eigenstates accumulate a phase factor of eiπ = −1 in a single circuit,

u±
2π−−→ −u± (51)

(and therefore any linear combination) exactly as the eigenstates of a symmetric Hermitian
Hamiltonian when a diabolic point is encircled once [21, 31].

(vi) For parameter values near the exceptional points, the two eigenvectors u+ and u− are
linearly independent. Approaching an exceptional point, the eigenvectors get linearly
dependent with a relative factor of i [34]:

u+ −→ ±iu− for (ε, V , γ ) → (0, γ0,±γ0). (52)

This can be seen for example by using the expansion (42). It should be pointed out again
that at the exceptional point the normalization fails, and the two eigenvectors are not
defined. The relation has only the meaning of a limiting process.

Let us finally discuss the geometric (Berry) phases for a cyclic adiabatic parameter evolution,
where an initial state returns to itself up to a factor. The normalization used here has the
advantage that the Berry phases can be directly read off from the instantaneous eigenfunctions
(see equation (25)), provided that the sign is varied continuously along the path.

For a curve encircling a single exceptional point, the eigenstate returns to itself up to a
factor of −1 after two cycles (see equation (46)). The same is true for a path encircling both
exceptional points, however for a single cycle (see equation (51)). Hence the geometric phase
for these cases is

γ B± = π. (53)

4. Concluding remarks

In this paper, a generalization of the diabolic crossing scenario to non-Hermitian matrix
Hamiltonians is analysed. In view of the fact that in many applications such matrices are (or
can be constructed to be) symmetric, we restricted ourselves to this case. In this simplified
situation, a system of normalized bi-orthogonal eigenstates can be used for constructing
systems of (resonance) eigenstates which are free of arbitrary phase factors. Under certain
conditions, the resonance eigenstates gain a phase factor, a geometric (or Berry) phase for a
cyclic parameter variation. Such phases can be easily calculated using this normalization.

For a symmetric Hermitian Hamiltonian, the behaviour of the eigenvalues and eigenstates
in parameter space is governed by the diabolic crossing scenario. In a generalization to a
non-Hermitian symmetric Hamiltonian, the real eigenvalues move into the complex plane and
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the diabolic point bifurcates into two exceptional ones, where the Hamiltonian is defective, i.e.
two eigenstates coalesce. This behaviour is generic for a variation of two real-valued system
parameters.

For such a generalized diabolic crossing scenario, the behaviour of eigenvalues and
eigenstates has been analysed in terms of a two-state system. When a single parameter
is varied, two different crossing types can be distinguished: crossings very similar to the
crossings in the diabolic scenario (type I) and different ones (type II). A cyclic variation of
the parameters can lead to an interchange of eigenvectors accompanied by additional phase
factors depending on the geometry of the cyclic path with respect to the exceptional points.

Finally, we would like to point out that in this paper we basically discussed the topological
structure of the Riemann surfaces of the functions

f (z) =
√
λ(t)− z2 (54)

where λ(t) is a (closed) path. In a more abstract setting the interested reader can find an
analysis in the book by Arnold et al [35].

In a companion paper [33] we will apply the results discussed here to a model system, the
Stark resonances of a double δ well.
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